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Abstract — A Neural Network (NN) approach for 
modelling ferromagnetic materials is presented. The 
macroscopic hysteretic nature of the material is taken into 
account together with iron losses by a ad-hoc NN which can be 
trained for modelling any kind of quasi-static dynamic loop 
(saturated and non-saturated, symmetric or asymmetric) 
generated by assigned distorted excitations. The main 
important advantages of this approach are: 1) easy NN 
implementation and training (just simple dynamic hysteresis 
measurements are required); 2) independence from the nature 
of excitation: the NN can indifferently perform the direct 
problem (prediction of B from a known waveform of H) or the 
inverse problem (prediction of  H from a known waveform of 
B).       

I. INTRODUCTION 
The modelling of magnetic material has been the 

subject of many studies, above all to take into account the 
hysteresis phenomenon and to model it in an efficient and 
accurate way, since magnetic materials have a lot of useful 
technical applications (magnetic recording device, motors, 
etc). Consequently the research and the development of 
new approaches of analysis and treatment remains a central 
issue. The possibility of using Neural Networks to model 
magnetic hysteresis has been verified in literature [1], and 
represents a good solution if a dedicated model for the 
training of the network is implemented. By starting from a 
small set of measured quasi-static loops, the NN manages 
the values of the magnetic field, H, and the flux density, B, 
as inputs while the differential permeability is the output. In 
particular, the proposed NN is able to perform the 
modelling of saturated and non-saturated, symmetric or 
asymmetric quasi-static hysteresis loops. Moreover, by 
adding a further input (the frequency f) to the previous NN, 
it is possible to take in account the effects of hysteresis 
losses on all of those cases in which distorted dynamic 
excitations are applied. In particular, the time-window [2] 
and Prony sinusoidal regression [3] techniques for non-
static hysteresis paths have been implemented.  

II. NEURAL NETWORK MODEL FOR QUASI-STATIC 
HYSTERESIS LOOPS  

The Neural Networks approach for modelling magnetic 
hysteresis is a valid alternative to the use of classical 
models such as the Preisach or Jiles-Atherton ones [4]. In 
fact, any hysteresis model requires the experimental 
characterization of the material by using measured loops. 
Moreover, as shown in [5], the characterization performed 
by using the saturated major loop is often not suitable for 
simulating minor loops with accuracy. In addition the 

optimal identification of the classical hysteresis models is 
still an open problem (see for example [6-7] and the 
references within), and the most used hysteresis models, 
such as Preisach or Jiles Atherton, have to be inverted if the 
flux density is the independent variable. In fact, the direct 
models allow faster computation when the external 
magnetic field H can play the role of the independent 
variable [8-9]. Thus, the aim of the presented NN approach 
is to provide a simpler way to take into account hysteresis 
avoiding both the identification of models and their 
inversion. The proposed NN approach is able to predict the 
quasi-static magnetic hysteretic behaviour of a 
ferromagnetic material by using few simple measurements 
(see Fig. 1).  

 

 
Fig. 1. Example of the asymmetric saturated loop used for NN training.  

 
The implemented NN is made by means simple 

feedforward architecture and trained by using the 
Levenberg-Marquardt backpropagation algorithm. The NN 
consists of two input neurons, representing the magnetic 
field, H, and the flux density, B, one hidden layer with 9 
neurons and one output neuron that gives as a result the 
value of the differential permeability, ( , ) /d H B dB dHµ = . 

The experimental loops used for carrying out data for 
the NN training are suitable asymmetric loops. Each loop is 
generated by following a path in the B-H plane that always 
involves a portion of the descending major-saturated-loop 
branch and a different ascending non-symmetric branch. 
Then, each experimental asymmetric loop is sampled using 
n points. The couple of co-ordinates [H(k),B(k)] of each k-
th sampled point (k = 1…n) is fed to the input of the NN. 
The corresponding differential magnetic permeability, 

( ( ), ( )) ( ) / ( )d H k B k dB k dH kµ = , is used as output. It is 
important to note that, by means the ( ( ), ( ))d H k B kµ   
value is possible to obtain both the value of  

( 1) ( ( ), ( )) ( )dB k H k B k dH kµ+ = ⋅  (direct problem) and the 
value of 1( 1) ( ( ), ( )) ( )dH k H k B k dB kµ −+ = ⋅  (inverse 
problem) with the same trained NN.  

Thus, the requested measurements for assembling the 
input and the output training patterns are the values of 
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external magnetic field H, the flux density B and the 
differential permeability, dµ . In particular, the training set 
was made of 100 H-B sampled points for each experimental 
hysteresis loop (see Fig.1). Altogether, 20 measured loops 
have been used during the training phase. In Fig. 2 the 
performance of NN model and experimental data are 
compared for the case of quasi-static hysteresis loops 
obtained by Praisach model. 

 
Fig. 2. Example of NN approach validation for quasi-static case.  

III. NEURAL NETWORK MODEL FOR DYNAMIC  HYSTERESIS 
LOOPS  

The change of hysteresis loop shape due to hysteretic 
material losses that occurs for all the dynamic cases, is 
taken in account by using the frequency parameter, f, as a 
further NN input. (see Fig. 3). This new NN can be 
regarded as a generalization of that of the previous case. 
Thus, the further input parameter, f, is used to training the 
NN on asymmetric hysteresis loops at different frequencies 
of excitation field. Once the NN was trained for asymmetric 
hysteresis loops at different frequencies, it is able to 
reconstruct any hysteretic path due to a distorted excitation 
by using the time-window and the time-frequency approach 
described in [2]. 

 

 
Fig. 2. Feedforward NN for dynamic hysteresis loops.  

IV. VALIDATION EXAMPLE OF NN APPROACH FOR 
MAGNETIC MODELLING UNDER DISTORTED EXCITATION  

A validation of presented NN approach has been made 
by a comparison with the results shown in [2] where the 
time-frequency approach was applied together with a 
dynamic version of the Jiles-Atherton (JA) model. A 
distorted magnetic filed H divided in a series of suitable 
time windows has been fixed (Fig. 4 (a)). By means of a 
time-frequency approach [2], different frequencies values 
for each time window have been founded.  In Fig. 4 (b) the 
whole path of hysteresis has been reconstructed by using 
the previous trained NN with a specific input frequency 
value for each time window. It is clear that the present 
approach fits the experimental loops as well as the 
windowed dynamic JA models [2].  

 
 

(a)                            (b) 
 

Fig. 4. A validation example of presented NN approach (b) under a 
distorted excitation H (a) compared with the appraoach proposed in [2].  

V. CONCLUSIONS  
A NN approach for analyzing magnetic field problems 

involving ferromagnetic materials has been presented. In 
particular the proposed neural approach can perform any 
dynamic hysteresis path generated by a fixed distorted 
excitation taking in the account the iron losses. The main 
important advantages of this approach are: 1) its easy to be 
implemented, since just simple hysteresis measurements are 
required for NN training, 2) the present approach is 
independent from the nature of the excitation: i.e. the NN 
can indifferently perform the direct problem (prediction of 
B from a known waveform of H) or the inverse problem 
(prediction of  H from a known waveform of B). This last 
point allow us to overcome the numerical problems that 
arises for describing the inverse JA model. 
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